
 WEKA Architecture Key Concepts | TECH BRIEF

 WEKA Architecture Key Concepts | TECH BRIEF

ABSTRACT
This white paper provides a technical summary of the architecture of the WEKA@ Data platform, with a focus on
key architecture elements. For a more detailed look, see the WEKA FS Architecture Guide.

 WEKA Architecture Key Concepts | TECH BRIEF

THE WEKA DATA PLATFORM ... 4

WekaFS ARCHITECTURE .. 4

FILE SYSTEM CLIENTS AND STORAGE SERVERS ... 5

DISTRIBUTED HASHING .. 6

MANAGING METADATA ... 6

DATA PROTECTION .. 7

SUMMARY .. 7

 WEKA Architecture Key Concepts | TECH BRIEF

THE WEKA DATA PLATFORM
The WEKA Data Platform was written entirely from scratch to
deliver the highest-performance file services by leveraging
NVMe flash. The software includes integrated tiering that
seamlessly expands the filesystem namespace to and from
object storage, without the need for special data migration
software or complex scripts; all data resides in a single
namespace for easy access and management.

WEKA’s unique architecture, as shown in Figure 1, is radically different from legacy storage systems, appliances,
and hypervisor-based software-defined storage solutions because it not only overcomes traditional storage
scaling and file sharing limitations but also allows parallel file access via POSIX, NFS, SMB, S3 and NVIDIA GPUDirect
Storage (GDS). It provides a rich enterprise feature set, including local snapshots and remote snapshots to the
cloud, clones, automated tiering, cloud-bursting, dynamic cluster rebalancing, private cloud multi-tenancy,
backup, encryption, authentication, key management, user groups, quotas with advisory, soft and hard
parameters and much more.

WekaFS ARCHITECTURE
At the core of the WEKA data platform is WekaFS, a distributed, parallel file system that eliminates the traditional
block-volume layer managing underlying storage resources. This integrated architecture does not suffer the
limitations of other shared storage solutions and delivers both scalability and performance effectively.

The image below provides an overview of the software architecture from the application layer all the way to the
physical persistent media layer. The WEKA core components, including the WekaFS unified namespace and other

functions such as virtual metadata servers (MDSs), execute
in user space in a Linux container (LXC), effectively
eliminating time-sharing and other kernel-specific
dependencies. The notable exception is the WEKA Virtual
File System (VFS) kernel driver, which provides the POSIX
filesystem interface to applications. Using the kernel driver
provides significantly higher performance than what can
be achieved using a FUSE user-space driver, and it allows
applications that require full POSIX compatibility to run on
a shared storage system.

WEKA supports all major Linux distributions and leverages virtualization and low-level Linux container techniques
to run its own RTOS (Real-Time Operating System) in user space, alongside the original Linux kernel. WEKA
manages its assigned resources (CPU cores, memory regions, network interface cards, and SSDs) to provide
process scheduling, memory management, and to control the I/O and networking stacks. By not relying on the
Linux kernel, WekaFS minimizes context switching, resulting in a shorter IO path and predictable low latencies. It
also allows upgrading of the WekaFS backend storage services independently of Linux OS and WEKA client (front
end) upgrades.

 WEKA Architecture Key Concepts | TECH BRIEF

WekaFS functionality running in its RTOS is comprised of the following software components:
• File Services (Front-End) – manages multi-protocol connectivity
• File System Compute and Clustering (Back-End) – manages data distribution, data protection, and file system

metadata services
• SSD Drive Agent – transforms the SSD into an efficient networked device
• Management Process – manages events, CLI, statistics, and call-home capability

WEKA core software runs inside LXC containers that have the benefit of improved isolation from other server
processes. WEKA software, when deployed, is containerized as microservices: Multiple containers for SMB, NFS, S3,
and other WekaFS data functions may exist per server. By spanning multiple LXC containers, WEKA enables even
greater parallelism and the ability to use more CPU cores and RAM than a single LXC container. A WEKA VFS driver
enables WekaFS to support full POSIX semantics and leverages lockless queues for I/O to achieve the best
performance while enhancing interoperability. The WekaFS POSIX file system has the same runtime semantics as
a local Linux file system (e.g., Ext4, XFS, and others), enabling applications that previously could not run on NFS
shared storage because of POSIX locking requirements, MMAP files, performance limitations, or other reasons.

Bypassing the kernel means that WEKA’s software stack is not only faster with lower latency, but is also portable
across different bare-metal, VM, containerized, and cloud environments. WEKA also only uses the resources that
are allocated to it inside its LXC containers, which means it can consume as little as one server core and a small
amount of RAM in a shared environment (converged architecture- application and storage software sharing the
same server) or as much as all the resources of the server (a dedicated appliance). The same software stack is
utilized in either case.

FILE SYSTEM CLIENTS AND STORAGE SERVERS
Like other parallel file systems, we talk about WEKA in terms of storage servers and file system clients. Storage
servers are all of the hosts that make up the file system. Filesystem clients are the HPC nodes that are accessing
the file system though the native POSIX driver. The file system client is implemented as two loadable kernel
modules and a userspace process called the frontend that ultimately communicates with software functions on
the server side. Like other POSIX file systems, applications interact with the Linux VFS layer and not directly with
specific file systems.

Each file system provides a kernel module that plugs into the VFS layer and provides the translations between
standard POSIX calls and a specific file system. In the case of WEKA, there are two kernel modules. The first
gateway module provides the direct VFS interaction and maintains the state for open filehandles. The second
module splits and forwards the requests to the front-end userspace process. All of the communication with the
storage servers is done by the front-end process.

Each storage server will have compute processes that run the data/metadata function of the file system. This is
the core logic of the file system layer. It handles both metadata operations as well as data operations. In a
production environment, there will be thousands of data/metadata functions. Each data/metadata function
handles a slice of the file system determined by a distributed hashing algorithm.

Each back-end storage server also has multiple Drive processes to manage the NVME devices of the server. These
not only process the data from the network but also manage the physical block mapping on the devices. Finally,

 WEKA Architecture Key Concepts | TECH BRIEF

each storage server also has a management process to handle the clustering of the servers. Five servers in the
cluster are chosen to be part of a consensus algorithm. This allows a global state of what hardware is up and
what is unreachable. The consensus protocol prevents the possibility of a “split brain” situation.

DISTRIBUTED HASHING
One key task a parallel file system must do is divide the work among multiple servers or even different processes
on servers. WEKA does this by hashing certain elements of the operation to determine which server process will
handle a particular operation. The following is an
oversimplified example. Imagine a whole namespace. The
goal of hashing is to divide up the namespace. One
common way to do this is by taking a simple modulo of
some value. In the example, the inode number is divided
by the number of hash points we have. In this case it’s 8.
We use the modulo or remainder as our answer. All values
that have a modulo of 1 when divided by 8 will hash to the
same value.

This gives us a programmatic way to determine which server will handle this inode. Since everybody in the cluster
knows the number of hash possibilities, they can all come up with the same answer. We can also use similar
mechanisms to build keyed arrays as the keys can be hashed for efficient lookups. In practice, this is an
oversimplified example. The file system does not hash on a simple modulo and more than the inode is hashed.
However, distributed hashing is a key way WEKA distributes work across the cluster. It’s also used extensively in
data structures to avoid scaling problems associated with traditional tree/b-tree methods.

MANAGING METADATA
With WEKA both POSIX and internal WEKA metadata is distributed. Each data/metadata (d/m) function manages
it’s own slice of the file system. The data structure tracking all the metadata for a given d/m function is called the
registry. For each d/m function there is a well-known superblock stored. The superblock contains a pointer to 512
L1 blocks. Each L1 block contains some number of L2 blocks. L2 blocks point at the various metadata blocks
controlled by this d/m function. While the L1 blocks are allocated at cluster start, the L2 blocks are only created as
needed.

There are several types of metadata blocks at the leaf level (all metadata blocks are 4k):

• File Inode - POSIX and WEKA proprietary file level information. C/M/A time, posix permissions, file length,
etc.

• Directory Inode - POSIX information C/M/A time, posix permissions, file length, etc. Directory split level, (no
entries are stored in a directory inode)

• Directory Slice - Dentries for a directory. May be spread across multiple slices
• Extent Descriptor Block - WEKA internal metadata describing where each 4k block of a 1MB section of
• a file is stored.

In general, the d/m function’s registry tree is stored, modified, and accessed in memory. There is a process to
periodically write the tree out to disk as well. All of the metadata is protected at the same protection level as the
data in the cluster. However, the superblock is replicated M+N times providing additional resiliency for this single

 WEKA Architecture Key Concepts | TECH BRIEF

4k block. The super block also contains some additional data for failure recovery. It stores a bitmask of all used
placements (covered later). It also stores the location of the journal tail.

DATA PROTECTION
WEKA data protection is based on failure domains not necessarily a single drive. The definition of a failure domain
is configurable. However, the default failure domain is a storage server. A failure domain can be as small as a
single drive or something larger like a multi-server enclosure or even a whole rack.

WEKA data protection level is enumerated M+N like a traditional raid. In this case, M is the number of data blocks
that are protected by N parity blocks. For example, an 8+2 would provide fault tolerance for two failure domains
with a storage capacity overhead of roughly 20%. M has a
valid range of 4 to 16. N can be 2, 3, or 4.

Spares can also be configured. Spare space is not
concentrated on a single device or failure domain. It’s
distributed across the cluster. This allows for faster rebuilds
and allows the underlying hardware to contribute to the
performance of the cluster. Keep in mind that one spare
drive of capacity will be equal to the size of the largest
failure domain. For example, if each storage server has 10 disks and one spare is configured, 10 disks worth of
capacity will be reserved across the cluster. Up to 4 spares can be configured.

Each data/metadata function in WEKA stores the data blocks and metadata it’s responsible for in its own
dedicated allocations of storage. Each NVME device is carved up into 128MB allocations called “chunks”. Each
chunk is dedicated to a specific data/metadata function. Any given data/metadata function will likely own more
than one chunk on a given NVMe drive..

SUMMARY
The WEKA Data Platform is based on WekaFS, a POSIX-compliant high-performance clustered, parallel file system
that has been built from the ground up to run natively on NVMe based storage. It is an ideal solution for
performance-intensive applications that demand high I/O and high concurrency to multiple clients. It is in
widespread use across areas such as Life Sciences, Financial Analytics, GPU-based ML, DL and AI applications,
EDA, and HPC applications. It excels in large bandwidth and small I/O-intensive applications that have relied on
parallel file systems for best performance. WEKA reduces the cost and complexity of storage, requiring fewer
hardware resources compared to traditional solutions. It also fully supports legacy protocols such as NFS and
SMB and has a rich set of enterprise-class features.

To learn more visit www.weka.io.

