
EBOOK

HOW TO GUIDE
Analyze Genome Sequence Data on AWS
with WekaFS and NVIDIA Clara Parabricks

INTRODUCTION . 3

CHAPTER 1: The Weka File System . 4
Hybrid Model and Cloud Bursting . 4
CPU Baseline . 4

CHAPTER 2: AWS Instance Creation . 5
Creating the WekaFS File System . 5
Configuring the CloudFormation Stack . 6

CHAPTER 3: Configuring Weka . 7
Rehydrating File Systems . 8

CHAPTER 4: Optimizing Performance . 9
Tuning the GPUs . 9
Pre-Fetching Data from Object Storage Tier . 9

CHAPTER 5: Using Parabricks . . 10
Installing Parabricks on GPU nodes . 10
Running the Germline Pipeline . 11
Running the DeepVariant Pipeline . 11

CHAPTER 6: Results . 12
Time to Completion . 12
File System Performance . 12
Performance Compared to CPUs . . 13
Accuracy . 13

CONCLUSION . 14

TABLE OF
CONTENTS

2

Whole-genome sequencing has become an essential and foundational part of genomic research, enabling researchers
to identify genetic signatures associated with diseases, differentiate sequencing errors from biological signals, and better
characterize various organisms’ genomes. With pandemics like COVID-19 that threaten human life, characterizing and
understanding genomes is now more crucial than ever. Commercially available, next-generation sequencing platforms
allow researchers to decode an entire human genome in less than a day. This acceleration in research capabilities can help
understand the susceptibility with infection by SARS-COV-2; can be used as the basis for vaccine creation; and can be
used for therapy selection for an individual based upon their unique genetic signatures, along with many other use-cases.

Traditionally, sequencing a whole human genome takes multiple days, coupled to a heavy compute power using CPU
resources. The Genome Analysis Toolkit (GATK), developed by the Broad Institute, is a multi-purpose software suite
for analyzing DNA and RNA based sequence data with the primary goal to identify genetic variants, and it is generally
considered the industry standard toolset. The GATK suite contains several tools, including the Base Quality Score
Recalibration (BQSR), the Burrows Wheeler Aligner Maximal Effect Match (BWA MEM) for aligning and calibrating
genomes, and the HaplotypeCaller, which efficiently identifies variants in sequences.

NVIDIA Clara Parabrick Pipelines replicate the functionality of GATK while harnessing GPUs’ power to provide the fastest
method to analyze genomes. The software, leveraging NVIDIA’s CUDA libraries to accelerate key algorithms, dramatically
reduces the time required to analyze a sequence compared to the CPU-only GATK tools and includes Google’s state-of-
the-art DeepVariant algorithm. Combined with the power of Amazon Web Services (AWS) and NVIDIA’s storage partner
WekaIO™ (Weka), the high performance sequence analysis of NVIDIA Clara Parabricks integrates with the convenience of
the cloud to offer a robust, fast, and simple solution to enable faster genomic research over existing state-of-the-art CPU-
based solutions, offering over 33x improvements in performance with over 99.9% concordance of results.

This eBook is a how-to guide targeted for genomic researchers, data scientists, and the IT teams supporting them, the latter
responsible for creating architectures to run sequence analysis jobs. This eBook covers rationale for various components,
creation of the Weka filesystem in AWS, setting up clients to run the germline variant calling pipeline using Parabricks,
various optimizations for both the storage and GPUs to provide the best performance, plus an analysis of all results
gathered during the tests. Sufficient details will be provided in order to replicate these results on your own.

3

INTRODUCTION

Weka offers WekaFS™, the world’s fastest file system, a parallel file system built on NVMe, boasting high throughput and low
latencies in an easy-to-manage package. Not only does Weka provide on-premises solutions through OEM storage vendors, but
they also support cloud deployments and hybrid environments, integrating seamlessly with AWS. Weka was a natural choice for
this workflow as they target many industries, including artificial intelligence (AI), life sciences, and financial services (FinServ).
Given today’s modern workflow requirements for large shared storage, low latencies, and the ability to work in the cloud, Weka is
well positioned to support those trying to analyze sequence data rapidly. Above all else, Weka is simple to set up and use.

Hybrid Model and Cloud Bursting

Suppose this is your introduction to Parabricks Pipelines. In that case, you may wish to begin by experimenting with the pipelines and
pulling data on a local server until you are comfortable with the process. This process will allow you to verify all tools’ functionality
and validate your dataset before scaling up to more extensive tests. In our test lab, we used an on-premises Weka cluster to store
all data and easily archive all data in an S3 bucket in AWS, allowing us to pull the data later from any cluster with access to AWS
servers.

This process strategy has several advantages, with one being the ability to experiment on a development machine to understand
how the tools work before running on more expensive or time-sensitive production servers, whether on-premises or in the cloud.
Weka makes it easy to transition data to the cloud and tier data to larger, slower storage with a single global namespace. Just a few
clicks in Weka’s web interface is all it takes to set up this connection.

CPU Baseline

To get a good feel for how quickly Parabricks can analyze genomes while leveraging NVIDIA GPUs, we decided to run a quick test
of the latest CPU-optimized pipelines available to the community. Sadly, these tests were anything but “quick.” It took us the better
part of a week to finally complete the tests successfully. While the wall-clock time for this analysis could certainly be optimized with
better pipelining of the stages, the best-case compute time still took a staggering 33 hours to analyze a single genome, which is 33
times longer than it takes Parabricks with four V100 GPUs to analyze the same genome with equivalent accuracy. Meanwhile, there
was a considerable amount of risk with a pipeline requiring that much time to complete. In the unfortunate scenario that one of the
stages fails or access to a system goes away, I could have lost several days’ worth of progress.

CHAPTER 1:
The Weka File System

4

Creating the WekaFS File System

Before starting the germline variant analysis pipeline, several EC2 instances plus an S3 object store need to be provisioned to
house both the file system and the GPU clients. You will be configuring a Weka file system to store and read your dataset, given that
its high-performance characteristics are more than capable of handling this genomics work. Luckily, the setup process is simple,
thanks to the pre-configured scripts provided at start.weka.io. To configure a file system on AWS, open start.weka.io in a browser
and perform the following steps:

1.	 In the window on the left side of the page, set the total capacity to 10TB.
2.	 Click the tiering option, so it is set to use both SSD and S3.
3.	 Select the appropriate region for the work, if applicable. Otherwise, the default value will suffice.
4.	 In the main window, click the “Deploy to AWS” button corresponding to the “i3en.2xlarge” instance type; this will create a

file system comprised of 7 instances with a total SSD capacity of 13.5TB and a maximum bandwidth of 5GB/sec.
5.	 Ensure that “Add clients to the cluster” is checked in the menu that pops up, as you want Weka’s CloudFormation script

to configure EC2 instances for us automatically.
6.	 For Client Type, select the p3.8xlarge instance type; this is a GPU-optimized instance with 4x 16GB V100 GPUs. This

instance type has proven to be more stable than its bigger brother, p3.16xlarge, and is the preferred instance for this work.
7.	 Set the number of clients to 4, which will bring the total GPU count to 16 for the cluster, though this number can be

tweaked depending on your local needs.
8.	 Select a Custom AMI for the AMI type, and enter “ami-08a5e4d75a3914234” for the AMI ID; this is the “Deep Learning

AMI (Ubuntu 18.04) Version 24.1” image which is
optimized for GPU workloads. While newer versions of
the Deep Learning AMIs exist, this version uses kernel
version 4.15.0-1065-aws, which is supported by Weka
version 3.7.2, while newer kernel versions are not yet
supported.

9.	 After the above steps are complete, click “Deploy to
AWS” to begin the deployment process. At this point,
the window should look similar to Figure 1.

5

CHAPTER 2:
AWS Instance Creation

Figure 1: configuring a cluster to deploy on start.weka.io

Configuring the CloudFormation Stack

After following the above steps, a new page will load to configure the AWS CloudFormation stack. This template will automatically
build all of our EC2 instances and mount the filesystem on your clients, minimizing the time required to get up and running. The
following steps will finish the setup of Weka on AWS. Note that at this point, you will need to be logged into whichever account you
plan on using for AWS.

1.	 Enter a name for the cluster in the “Stack name” field, such as “weka-parabricks-germline”.
2.	 In the VPC and Subnet fields, select the desired values based on your environment.
3.	 Select “Internet Facing” for the Load Balancer Type to make it easy to connect to the filesystem GUI externally.
4.	 Select an appropriate key to connect to the instances based on your needs.
5.	 Leave the remaining values at their default settings.
6.	 Check the box to acknowledge that AWS CloudFormation might create IAM resources.
7.	 Click the “Create stack” button at the bottom of the page; this will initiate the CloudFormation creation process

and begin building a Weka file system with four connected EC2 clients on AWS.
8.	 After several minutes, the CloudFormation script will show as completed with a “CREATE_COMPLETE” status

in green, as seen in Figure 2.

6

Figure 2: successful completion of the CloudFormation script on AWS

After the CloudFormation script has finished, click the “Outputs” tab on the CloudFormation page and open the first link in the list,
as shown in Figure 3. This link opens the Weka GUI, which can be used to configure the file system, attach an object store, and
view performance statistics. The default credentials for the Weka file system are “admin”/”admin”. For security purposes, it is highly
encouraged to change the password immediately. After logging in, you will be greeted with a system-level view of your cluster,
including several performance metrics.

From here, open the “Object Stores” page using the menu on the left side of the screen to add the S3 object store, which was created
with the start.weka.io scripts. Click the “+” sign next to Object Stores, then fill out the window with the necessary information for the
S3 object store that you already created, and click the “Validate” button. If the validation succeeds, click “Configure” to configure
the S3 bucket to be used with Weka.

Figure 3: clicking the link in the Outputs tab opens up the WekaFS homepage

CHAPTER 3:
Configuring Weka

7

After the S3 object store has been configured,
it needs to be attached to the default file
system to be used as a backup for future work.
To do so, navigate to the “Filesystems” page
using the main menu. In the new page, click
the “default” filesystem to display several new
options. Click “Attach Object Store” and select
the object store that was just added from the
drop-down list and click “Attach.”

Rehydrating File Systems

If a new cluster is created, an existing S3 object
store can be used to pre-fill a file system with
a copy of the dataset already stored in S3;
this makes it easy to deploy new clusters as
needed and ensure no data is lost during the
creation and deletion processes.

To create a new file system using existing contents on an object store, check there is still free capacity to be used for other file
systems, and click “New Filesystem” in the Filesystems page. Enter a name for the new file system, and check “Tiering” while
selecting the object store to be used. Configure the capacities as desired, select “From Uploaded Snapshot,” and enter the object
store locator for the S3 bucket. After clicking “Create,” a new file system will be created, pre-filled with the dataset from earlier runs.
As our S3 object store is currently empty, however, we won’t be able to do this on our first pass of the testing, but as long as the S3
bucket is intact, we can use it to accelerate all future deployments that rely on a common dataset.

Figure 4: the default WekaFS homepage for the created cluster

Figure 5: The default WekaFS homepage for the created cluster

8

Before installing Parabricks and launching tests, several tweaks can be made to optimize the pipeline’s performance and finish
analyzing genomes more rapidly. These optimizations include tuning the GPUs for maximum performance and pre-fetching data
from the object store to ensure data is stored in flash.

Tuning the GPUs

Amazon provides documentation on how to optimize GPUs for EC2 instances for maximum performance. For our selected
p3.8xlarge instances, we will want to run the following steps:

1.	 Enable the GPU persistence daemon, which ensures the GPUs are always initialized, even when no clients are connected
to the GPUs.
sudo nvidia-persistenced

2.	 Set the maximum frequency for the memory and graphics clocks on the GPUs to improve throughput.
sudo nvidia-smi -ac 877,1530

Pre-Fetching Data from Object Storage Tier

When the dataset has been replicated in an S3 bucket in AWS which offers an easy method to hydrate file systems and provides
a layer of protection for the data by ensuring it is always backed up. While the S3 bucket is a great way to rehydrate storage and
backup data, it is recommended to pre-fetch data from the object store so all data is loaded in flash for optimal throughput. Weka
has a built-in tool that, combined with some standard Linux commands, will fetch all files from the object store and load them
into the flash tier, which provides the fastest read and write speeds. To pre-fetch the data, run the following command (replace
<directory path> with the location of the Weka mount point):

find -L <directory path> -type f | xargs -r -n512 -P64 weka fs tier fetch -v

As before, this will only matter for replicated runs when pre-loading a file system from an S3 bucket.

Newer versions of Weka (version 3.8.0 and above) include a function, weka fs tier release, which prompts the file system to update
the object store with the latest data in flash on demand.

9

CHAPTER 4:
Optimizing Performance

Now that a filesystem has been created and the clients have been optimized for maximum performance, it is time to install
Parabricks and run the germline pipeline. Note that while results have been collected for both Parabricks version 2.5.3 and 3.0.0 for
comparison’s sake, only the steps to install version 3.0.0 are listed below. Additionally, a license will need to be requested from the
Parabricks developer portal.

Installing Parabricks on GPU nodes

The latest version of the Parabricks software can be installed with a few simple commands. First, download the software on all
p3.8xlarge instances using curl.

curl --output /tmp/parabricks.tar.gz --silent

Next, extract the package and run the installer.
cd /tmp/
tar -xvf parabricks.tar.gz
cd ./parabricks
sudo ./installer.py

The installer will display the EULA and give several prompts. Answer “yes” for all prompts. Once complete, Parabricks is installed
and pipelines can finally be run. This can be verified by checking the version of pbrun installed:

$ pbrun version
pbrun: v3.0.0.2

10

CHAPTER 5:
Using Parabricks

Running the Germline Pipeline

The first pipeline to run is the commonly-used germline variant analysis pipeline which analyzes sequence data from a human
genome or exome. To run the test, navigate to the Weka mount point on the filesystem and run the following:

cd /mnt/weka
pbrun germline --ref Ref/Homo_sapiens_assembly38.fasta --in-fq NA12878xCO_combined_R1.fastq.gz NA12878xCO_combined_
R2.fastq.gz --knownSites Ref/Homo_sapiens_assembly38.known_indels.vcf --out-bam output.bam --out-variants output.vcf --out-
recal-file report.txt

This command will take a little over an hour to complete as it goes through the various phases of the pipeline. Once complete, the
output will display blocks of text indicating the total time to complete each phase, similar to the following:

Running the DeepVariant Pipeline

The next pipeline is the DeepVariant algorithm from Google which is another commonly-used tool for sequencing genomes, though
it tends to be seen as too slow to run while still being practical. Luckily, with Parabricks running on NVIDIA GPUs, we don’t have to
wait very long as the algorithm will finish in just under 40 minutes on an aligned genome. To run DeepVariant, execute the following
command from the file system:

pbrun deepvariant --ref Ref/Homo_sapiens_assembly38.fasta --in-bam output.bam --out-variants output.vcf

11

Time to Completion

These results showcase the average time to complete the main phases of the germline and DeepVariant pipelines. The total time
for the germline pipeline is the sum of the fq2bam alignment and HaplotypeCaller phases, while the DeepVariant pipeline equals
the sum of fq2bam and DeepVariant. The fq2bam results in particular indicate how much of a performance improvement version
3.0.0 of the Parabricks software provides over version 2.5.3.

TEST PHASE PARABRICKS VERSION AVERAGE COMPLETION TIME

FQ2BAM
2.5.3 81 minutes, 29 seconds

3.0.0 50 minutes, 51 seconds

HaplotypeCaller
2.5.3 16 minutes

3.0.0 15 minutes, 36 seconds

DeepVariant
2.5.3 38 minutes, 18 seconds

3.0.0 38 minutes, 31 seconds

File System Performance

These results display typical storage requirements for the pipelines as seen by the WekaIO file system. Given Weka’s ability to
handle large IO requirements, it is able to keep up with the Parabricks tests without breaking a sweat. The Weka file system still has
plenty of headroom to handle additional clients sequencing genomes at the same time.

GERMLINE
PHASE

PARABRICKS
VERSION

MAX READ
BW (GB/s)

MAX WRITE
BW (GB/s)

MAX READ
IOPS

MAX WRITE
IOPS

FQ2BAM
2.5.3 1.003 0.41 6,870 IO/s 4,236 IO/s

3.0.0 1.525 0.231 21,327 IO/s 20,530 IO/s

HaplotypeCaller
2.5.3 1.984 0.567 16,496 IO/s 6,718.2 IO/s

3.0.0 1.003 1.051 15,072 IO/s 85,213 IO/s

12

CHAPTER 6:
Results

Performance Compared to CPUs

While breaking down the completion time of the various phases of the pipelines running on both CPUs and NVIDIA GPUs, the
dramatic performance improvements are readily apparent, as seen in the following table. Note that while Parabricks uses the
fq2bam aligner, GATK uses BWA MEM for identical results.

TEST PHASE CPU/GPU AVERAGE COMPLETION TIME

FQ2BAM/BWA MEM
CPU 879 minutes, 58 seconds

GPU 50 minutes, 51 seconds

HaplotypeCaller
CPU 1081 minutes, 58 seconds

GPU 15 minutes, 36 seconds

DeepVariant
CPU 389 minutes, 19 seconds

GPU 38 minutes, 31 seconds

Accuracy

While the performance numbers from Parabricks are certainly beyond impressive, it’s arguably more impressive than the software is
able to achieve these numbers with equivalent accuracy. The Parabricks implementation has greater than 99.9% identity compared
to the CPU-optimized pipeline that I ran against the same dataset.

13

NVIDIA’s Parabricks combined with the power of AWS and Weka provides numerous advantages over existing CPU-optimized
solutions, saving time, money, and resources, all without sacrificing the accuracy of the results. Weka made it simple to expand
from my local test environment to the cloud, all while keeping my data intact. With a few additional clicks in Weka’s easy-to-use
interface, I was able to rehydrate a new filesystem with data from my S3 bucket - a process that took only a few minutes for a few
hundred gigabytes of data. This added an extra layer of security and simplicity to managing my dataset and filesystem in case I
lost access to any components. Given the comparable performance between on-premises and cloud-based Weka filesystems,
researchers can opt for the solution that best suits their needs.

For anyone looking to accelerate their genomics pipelines, NVIDIA Parabricks absolutely needs to be a part of their toolset as it is
able to provide the same accuracy and analysis capabilities as the CPU-based GATK toolset, while dramatically reducing the time
by as much as 33x and simplifying the steps required to analyze a complete genome.

910 E Hamilton Avenue, Suite 430, Campbell, CA 95008 T: 408.335.0085 E: info@weka.io www.weka.io

©2017-2020 All rights reserved. WekaIO, WekaFS, Weka AI, WIN, Weka Innovation Network, Weka Within, the Weka brand mark, WIN logo, Weka AI logo,
Weka logo, and Radically Simple Storage are trademarks of WekaIO, Inc. and its affiliates in the United States and/or other countries. Other trademarks are
the property of their respective companies. References in this publication to WekaIO’s products, programs, or services do not imply that WekaIO intends
to make these available in all countries in which it operates. Product specifications provided are sample specifications and do not constitute a warranty.
Information is true as of the date of publication and is subject to change. Actual specifications for unique part numbers may vary.

W03EB202010

CONCLUSION

mailto:info@weka.io
http://www.weka.io

