
WEKA Data
Platform
Architecture
FEBRUARY 2025

WHITE PAPER

2

2

REFERENCE ARCHITECTURE

Abstract

This white paper provides a technical overview of the features and benefits of the WekaFS file system, including details on

theory of operation, features and management, and independent performance validation.

Revisions

DATE DESCRIPTION

July 2017 Initial Document, authored by Liran Zvibel and David Hiatt

June 2019 Feature updates, authored by Barbara Murphy

July 2020 Major update with expanded content to include new features, performance, sizing, best practices, authored by

Barbara Murphy

March 2021 Feature updates, authored by Barbara Murphy

February 2022 New and updated features, updated performance, Authored by Joel Kaufman

December 2022 New and updated features authored by Joel Kaufman

August 2023 New and updated features, authored by Joel Kaufman

February 2025 New and updated features, authored by Colin Gallagher

3

3

REFERENCE ARCHITECTURE

Contents

Introduction ... 5

Common Storage Challenges in the Cloud ... 6

Designing a Unified, Cloud Era Storage ... 7

The WEKA® Data Platform .. 8
WekaFS Benefits.. 9

WekaFS Architecture ... 10
File System Design ... 11

Supported Protocols ... 12

WEKA Storage Servers .. 13
Integrated Flash and Disk Layers for Hybrid Storage ... 14
Networking ... 14
Network High Availability (HA) ..15
Protocols ...16

Management GUI ...18
Command Line Interface (CLI) .. 19
REST API .. 19
Adaptive Caching ...20
Global Namespace and Expansion ...20

Thin Provisioning ... 21

Non-Disruptive Upgrades .. 21
Integrated Tiered Data Management ... 21
Data Migration to WekaFS ... 22
Snapshots and Clones .. 23

Snap-to-Object ... 23
Data Protection .. 24
WekaFS Data Protection Schema.. 25
Virtual (hot) Spare..26

Data Distribution ...26
WekaFS Rebuilds ... 27
Power-Fail and End-to-End Data Protection .. 27

Automated Data Rebalancing ... 28
Container Storage Integration ... 28

Multi-Tenancy Features .. 28
Quality of Service .. 29
Authentication and Access Control ... 30
Encryption In-Flight and At-Rest... 31
Key Rotation and Key Management.. 32

4

4

REFERENCE ARCHITECTURE

Cloud Auto Scaling .. 32

Flexible Deployment Options (On-Premises and Cloud) ... 32
Converged ... 33
Dedicated Storage Server .. 33
Native Public Cloud ... 34

WekaFS Performance Proof Points .. 35
ARM-Based Cloud Performance with WEKA .. 36

Performance to GPU Storage ... 36
Performance in the cloud ... 38

Summary .. 40

5

5

REFERENCE ARCHITECTURE

Introduction

WEKA was founded on the idea that current storage solutions have only provided incremental

improvements to legacy designs, allowing for a widening gap between compute performance and data

storage performance. Storage remains a bottleneck to application performance, and with the continued

densification of compute in areas such as GPU-based applications, has become even more problematic. In

-competitive market, organizations need flexible infrastructure; application workloads are

becoming increasingly complex and data sets are continuing to grow unchecked, forcing enterprises to

architect overly complicated and costly systems that reduce IT agility. As a result, important business

insights remain locked away, out of reach of decision makers.

IT organizations are adopting cloud technology for its fluid, on-demand scalability that supports diverse

workloads at scale. However, while network and compute can be virtualized to operate at scale very

effectively, storage remains largely isolated in silos based on system performance profiles. Consequently,

organizations are forced to architect a storage system that is highly customized for their environment and

workloads from building blocks that do not scale. The result is a storage solution that is complex,

temperamental, expensive, and slow.

WEKA has built a software-only, high-performance, file-based storage solution that is highly scalable and

easy to deploy, configure, manage, and expand. The design philosophy behind the Weka file system

(WekaFS) was to create a single storage architecture that runs on-premises or in the public cloud with

the performance of all-flash arrays, the simplicity and feature set of Network-Attached Storage (NAS), and

the scalability and economics of the cloud.

Figure 1: WekaFS Benefits Summary

6

6

REFERENCE ARCHITECTURE

• SPEC SFS 2014, SPEC Storage 2020, IO-500

and STAC benchmarks

• Supports bare-metal, containerized, virtual, and cloud (on-prem, hybrid, public) environments

• Deployable as a converged platform, a dedicated storage appliance, or native in the cloud

• Flexible application storage access, including POSIX, NFS, SMB, S3, and NVIDIA® GPUDirect® storage

• Zero performance tuning to support small and large files simultaneously, with both mixed random and sequential

I/O patterns

• Application-level 4K I/O, consistent sub-250 microsecond latency on high-speed networks, unlimited random IOPs

performance linear scaling in line with the size of the cluster

• Automated built-in tiering to expand the namespace from fast flash to object storage either on-premises or in the cloud

• Strong security features including encryption (at-rest and in-flight), authentication, key management, LDAP

• Fully distributed data and metadata to ensure that there are no hotspots in the storage cluster

• Distributed resilience that eliminates the bottlenecks of traditional built-in data protection

• Full cloud integration with cloud-bursting for a hybrid cloud model or 100% public cloud

• Availability in major cloud hyperscalers such as AWS, GCP, OCI, and Azure.

• Local Snapshots and Snap-to-Object for backup, archive and disaster recovery

• Filesystem cloning for rapid development and testing workflows

• Non-disruptive upgrades for storage services

• Full GUI, CLI and API management

Common Storage Challenges in the Cloud

Modern day applications have a wide variety of storage performance requirements (IOPs, bandwidth, latency), and when

combined with the diversity of application file formats, access protocols, and data structures, it can all lead to increased

IT complexity.

Storage architects try to work around these limitations by employing multiple storage architectures for specific applications.

All-flash Storage Area Networks (SAN) and all-flash arrays (AFAs) are optimized for performance but they provide neither

the scale of the cloud nor the simplicity and shareability of network-attached storage (NAS). Furthermore, SANs provide

block storage protocols that are not shareable across servers, thus they are unsuitable for shared storage use cases. The

result of these workarounds has been a costly and endless cycle of rearchitecting infrastructure to keep pace with changing

application requirements.

It is a daunting task to determine which storage solution is best suited to a particular environment or application workload

because of the variety of options available. Some solutions are optimized for performance while others are optimized for

scale. Workloads in the technical compute space, such as Artificial Intelligence (AI) and Machine Learning (ML), genomic

research, and financial analytics, all of which generate both large file sequential access and small file random access on very

https://www.weka.io/company/weka-newsroom/press-releases/wekaio-matrix-cements-storage-leadership-groundbreaking-performance-latency-results-spec-sfs-2014/
https://www.spec.org/storage2020/results
https://www.weka.io/company/weka-newsroom/press-releases/wekaio-places-first-on-io-500-challenge/
https://www.weka.io/blog/weka-hpe-and-kx-systems-set-17-new-stac-m3-records/

7

7

REFERENCE ARCHITECTURE

large data sets, are especially problematic. No single traditional storage design has been able to address all these workload

patterns. The workaround has always been to use multiple storage systems and complex data management platforms.

Designing a Unified, Cloud Era Storage

When designing a modern storage solution, a key consideration is to account for the continuing evolution and improvement

of technology. A truly software-defined storage solution should accommodate such changes, which means that it must be

able to run on commodity server hardware whether on-prem or in a public cloud environment, adapt to customer

environments, and add cloud-like agility, scalability, and on-demand performance. It should also be simple to deploy and

expand fluidly without incurring the typical procurement delays associated with traditional external storage appliances.

The limitations created by legacy design constraints led the founders of WEKA to develop a brand-new file system

that delivers the performance of all-flash arrays, the simplicity of scale-out NAS, and the scalability of the cloud in a

single architecture.

Figure 2: The WEKA File System Design Approach

The WEKA file system, WekaFS , is a software-only storage solution with a clean sheet design that solves the problems

associated with traditional storage systems. It runs on any standard AMD or Intel x86-based server hardware with

commodity NVMe Solid-State Disks (SSDs), eliminating the need for custom specialized hardware. This approach allows

you to take advantage of improvements in technology without the pain of complete forklift upgrades to next-generation

architectures, including public cloud deployments.

8

8

REFERENCE ARCHITECTURE

The WEKA® Data Platform

The WEKA Data Platform, powered by WekaFS, solves the common storage challenges previously mentioned by

eliminating the chokepoints that impact application performance. It is well-suited for demanding environments that need

shareable storage with low-latency, high-performance, and cloud scalability.

Example use cases include:

• Artificial Intelligence (AI) and Machine Learning (ML), including AIOps and MLOps

• Life sciences including genomics, Cryo-EM, pharmacometrics (NONMEM, PsN)

• Financial trading, including backtesting, time-series analysis, and risk management

• Engineering DevOps

• Electronic Design and Automation (EDA)

• Media rendering and visual effects (VFX)

• High-Performance Computing (HPC)

• GPU pipeline acceleration

delivers a more powerful and simpler solution that would have traditionally required several disparate storage systems. The

resulting software solution delivers high performance for all workloads (big and small files, reads and writes, random,

sequential, and metadata heavy). Furthermore, because it is designed to run on commodity server infrastructure, it does not

rely on any specialized hardware.

WekaFS is a fully distributed parallel file system that was written entirely from scratch to deliver the highest performance file

services by leveraging NVMe flash. The software also includes integrated tiering that seamlessly expands the namespace to

and from hard disk drive (HDD) object storage, without the need for special data migration software or complex scripts; all

data resides in a single namespace for easy access and management. The intuitive graphical user interface allows a single

administrator to manage exabytes of data quickly and easily without any specialized storage training.

9

9

REFERENCE ARCHITECTURE

Figure 3: WekaFS combines NVMe flash with cloud object storage in a single global namespace

hypervisor-based software-defined storage solutions because it not only overcomes traditional storage scaling and file

sharing limitations but also allows parallel file access via POSIX, NFS, SMB, S3 and GPUDirect Storage. It provides a rich

enterprise feature set, including local snapshots and remote snapshots to the cloud, clones, automated tiering, cloud-

bursting, dynamic cluster rebalancing, multi-tenancy,QoS, backup, encryption, authentication, key management, , data

reduction, quotas with advisory, soft and hard parameters and much more.

WekaFS Benefits
• Highest performance across all IO profiles ideal for mixed small and large file workloads

• Scalable capacity start as small as 15TB and scale to exabytes in a single namespace

• Strong security keep data safe from threat or rogue actors with strong encryption and granular access control

management

• Hybrid Cloud burst to all the major cloud providers for compute agility or run natively in the cloud

• Backup push backups straight to private or public cloud for long term retention

• Best economics combine flash and disk for best cost at scale

10

10

REFERENCE ARCHITECTURE

WekaFS Architecture

-like experience, whether you run your applications on-premises

or plan to move them to the cloud. WekaFS provides a seamless transition to the cloud and back.

Most legacy parallel file systems overlay file management software on top of block storage, creating a layered architecture

that impacts performance. WekaFS is a distributed, parallel file system that eliminates the traditional block-volume layer

managing underlying storage resources. This integrated architecture does not suffer the limitations of other shared storage

solutions and delivers both scalability and performance effectively.

Figure 4 below provides an overview of the software architecture from the application layer all the way to the physical

persistent media layer. The WEKA core components, including the WekaFS unified namespace and other functions such as

virtual metadata servers (MDSs), execute in user space in a Linux container (LXC), effectively eliminating time-sharing and

other kernel-specific dependencies. The notable exception is the WEKA Virtual File System (VFS) kernel driver, which

provides the POSIX filesystem interface to applications. Using the kernel driver provides significantly higher performance

than what can be achieved using a FUSE user-space driver, and it allows applications that require full POSIX compatibility

to run on a shared storage system.

Figure 4: WekaFS Software-Based Storage Architecture

WEKA supports all major Linux distributions and leverages virtualization and low-level Linux container techniques to run its

own RTOS (Real-Time Operating System) in user space, alongside the original Linux kernel. WEKA manages its assigned

resources (CPU cores, memory regions, network interface cards, and SSDs) to provide process scheduling, memory

management, and to control the I/O and networking stacks. By not relying on the Linux kernel, WekaFS minimizes context

switching, resulting in a shorter IO path and predictable low latencies. It also allows upgrading of the WekaFS backend

storage services independently of Linux OS and WEKA client (front end) upgrades.

11

11 REFERENCE ARCHITECTURE

WekaFS functionality running in its RTOS (figure 4) is comprised of the following software components:

• File Services (Front End) manages multi-protocol connectivity

• File System Compute and Clustering (Back End) manages data distribution, data protection, and file

system metadata services

• SSD Drive Agent transforms the SSD into an efficient networked device

• Management Process manages events, CLI, statistics, and call-home capability

• Object Connector read and write to the object store

WEKA core software in the RTOS runs inside LXC containers that have the benefit of improved isolation from other server

processes. WEKA software, when deployed, is containerized as microservices: Multiple containers for SMB, NFS, S3, and

core WekaFS may exist per host. By spanning multiple LXC containers, WEKA enables even greater parallelism and the

ability to use more CPU cores and RAM than a single LXC container. A WEKA VFS driver enables WekaFS to support full

POSIX semantics and leverages lockless queues for I/O to achieve the best performance while enhancing interoperability.

The WekaFS POSIX file system has the same runtime semantics as a local Linux file system (e.g., Ext4, XFS, and others),

enabling applications that previously could not run on NFS shared storage because of POSIX locking requirements, MMAP

files, performance limitations, or other reasons. These applications will enjoy massively improved performance compared to

the local file system.

different bare-metal, VM, containerized, and cloud instance environments.

Resource consumption is often a problem with traditional software-based storage designs because these solutions either

take over the entire server or share common resources with applications. This extra software overhead introduces latency

and steals precious CPU cycles. By comparison, WEKA only uses the resources that are allocated to it inside its LXC

containers, which means it can consume as little as one server core and a small amount of RAM in a shared environment

(converged architecture- application and storage software sharing the same server) or as much as all the resources of the

server (a dedicated appliance). The same software stack is utilized in either case.

File System Design

From the outset, WekaFS was designed to solve many of the problems inherent with legacy scale-out NAS solutions. One of

the key design considerations was to build a software platform that could address the requirements of different user groups

within an organization at scale, or a multi-tenant environment. The most popular scale-out NAS file systems support a

construct of a single file system and a single namespace, utilizing directories and quota systems to allocate resources and

manage permissions. While this solution worked at smaller scale, it has made management complex when the number of

users and/or directories scale. Full isolation of user groups requires the creation of new file systems and namespaces, which

then creates islands of physical storage to manage. Additionally, directory scaling is a problem and typically requires

creating multiple directories to maintain performance, further exacerbating the complexity.

12

12

REFERENCE ARCHITECTURE

As such, WekaFS differs from other scale-out NAS solutions in that it embraces the concept of many file systems within the

provide its own snapshot policies, tiering to object store, organizations, role-based access control (RBAC), quotas and much

more. A WEKA file system is a logical construct and unlike other solutions, the file system capacity can be changed on the

fly. Clients that are mounted can observe the change in file system size right away without any need to pause I/O. As

already mentioned, each file system has a choice to tier to an object store, and if it is a tiered file system, the ratio of hot

(NVMe) tier and object (HDD) tier can also be changed on the fly. A file system can be split into multiple organizations

managed by their own administrator.

A single file system can support billions of directories and trillions of files, delivering a scalability model more akin to object

stores than NAS systems, and directories scale with no loss in performance. Currently WekaFS supports up to 1024 file

systems, and up to 24,000 snapshots in a single cluster.

WekaFS Limits:

• Up to 6.4 trillion files or directories

• Up to 14 Exabytes managed capacity in the global namespace

• Up to 6.4 billion files in a directory

• Up to 4 petabytes for a single file

Supported Protocols

Clients with the appropriate credentials and privileges can create, modify, and read data using one of the following

protocols:

• POSIX

• NVIDIA® GPUDirect® Storage (GDS)51

• NFS (Network File System) v3 and v4.1

• SMB (Server Message Block) v2 and v3

• S3 (Simple Storage Service)

Note: Many non-traditional applications and data systems can take advantage of the POSIX capabilities that WekaFS provides as it

mount to Hadoop nodes to provide very high performance.

Data written to the file system from one protocol can be read via another one, so the data is fully shareable among

applications.

1 NVIDIA GPUDirect Storage is a protocol developed by NVIDIA to improve bandwidth and reduce latency between the NIC and GPU memory. It is currently available on select NVIDIA GPU-based systems.

13

13

REFERENCE ARCHITECTURE

WEKA Storage Servers

WEKA storage servers are created by installing WekaFS on any standard AMD EPYC or Intel Xeon Scalable Processor-

based hardware with the appropriate memory, CPU processor, networking, and NVMe solid-state drives. A configuration of

8 storage servers is required to create a cluster that can survive a two-server failure. To create an appliance-like experience,

WEKA has worked with leading hardware vendors to create a single part number that can be used to order a complete

storage system inclusive of a software license. More details on specific configurations from Cisco, Dell, HPE, Hitachi

Vantara, Lenovo, Penguin, and Supermicro as well as AWS,Azure,GCP and OCI are available on those vendors websites.

For all other platforms, each host must conform to the following minimum specification outlined below in Tables 1 and 2:

COMPONENT DESCRIPTION MINIMUM QUANTITY

Processor (recommended)* Intel Xeon Silver 4214R processor 2

Memory DDR4-2666, 8GB DIMM 12

SSD (for boot device) M.2 or U.2 SATA, 480GB or larger 1

SSD (for WekaFS) U.2 NVMe, 960GB or larger 4

Network Interface Card (Ethernet or

InfiniBand)

10Gb or above with DPDK support

1

WekaFS requires an x86-64 architecture, with a minimum of one processor with 2.2GHz and 12 cores.

COMPONENT DESCRIPTION MINIMUM QUANTITY

Processor AMD EPYC 7402P processor 1

Memory DDR4-2666, 16GB DIMM 8

SSD (for boot device) M.2 or U.2 SATA, 480GB or larger 1

SSD (for WekaFS) U.2 NVMe, 960GB or larger 4

Network Interface Card (Ethernet or

InfiniBand)

10Gb or above with DPDK support

1

Note: To achieve the Performance referenced in later sections of this paper, 100Gb or above NICs will be required.

Table 1: Minimum Hardware Specification for Intel Scalable Processor-Based Server

Table 2: Minimum Hardware Specification for AMD EPYC Scalable Processor-Based Server

14

14

REFERENCE ARCHITECTURE

Integrated Flash and Disk Layers for Hybrid Storage

The WekaFS storage design consists of two separate layers, an NVMe SSD-based flash layer that provides high-

performance file services to the applications, and an optional S3-compatible object storage layer that manages the long-

term data lake (outlined in Figure 3). The two layers can be physically separate, but logically serve as one extended

namespace to the applications. WekaFS expands the namespace from the NVMe flash layer to the object store, presenting

a single global namespace that scales to exabytes. The object store can be from any S3-API compliant vendor for either on-

premises or public cloud deployment. WekaFS only requires the presence of an S3 bucket, so an existing object store can

be shared with WekaFS for the namespace extension, while still supporting other applications in separate buckets. As we

will see later, WekaFS leverages components of the object store capability to enable cloud bursting, backup to the cloud, DR

to another WekaFS cluster, or file system cloning.

Networking

The WEKA system supports the following types of networking technologies:

• InfiniBand (IB) HDR and EDR

• Ethernet 10Gbit minimum, 100Gbit and above recommended

performance on either one. For networking, the WEKA system does not use standard kernel-based TCP/IP services, but a

proprietary networking stack based on the following:

• Use of DPDK to map the network device in the user space and make use of the network device without any context

switches and without copying data between kernels. This bypassing of the kernel stack eliminates the consumption of

kernel resources for networking operations and can be scaled to run on multiple hosts. It applies to both backend and

client hosts and enables the WEKA system to fully saturate up to multiple 400Gbit Ethernet or InfiniBand links.

• Implementation of a proprietary WEKA protocol over UDP, i.e., the underlying network may involve routing between

subnets or any other networking infrastructure that supports UDP. Clients can be on different subnets, as long as they

are routable to reach the storage nodes.

The use of DPDK delivers operations with high throughput and extremely low latency. Low latency is achieved by bypassing

the kernel and sending and receiving packages directly from the NIC. High throughput is achieved because multiple cores

in the same host can work in parallel, eliminating any common bottleneck.

For legacy systems that lack support for SR-IOV (Single Root I/O Virtualization) and DPDK, WekaFS defaults to the in-

and is typically used with older hardware such as the Mellanox CX5 family of NICs.

In addition to being compatible with older platforms, the UDP mode does not dedicate CPU resources, but will yield CPU

resources to other applications. This can be useful when the extra CPU cores are needed for other purposes.

For RDMA-enabled environments, common in GPU accelerated computing, WekaFS supports RDMA for InfiniBand and

Ethernet to supply high performance without the need to dedicate cores to the WEKA front-end processes.

15

15

REFERENCE ARCHITECTURE

Application clients connect to the WEKA storage cluster via Ethernet or InfiniBand connections. The WEKA software

supports 10GbE, 25GbE, 40GbE, 50GbE, 100GbE, 200GbE, and 400GbE Ethernet networks, and EDR ,200Gb HDR and

400GbE NDR InfiniBand networks. For the best performance outlined in this document, WEKA recommends using at least

100Gbit network links.

Many enterprise environments have a mixed network topology composed of both Infiniband and Ethernet to support both

high performance computing application clients as well as more traditional enterprise application clients. WekaFS allows

InfiniBand clients and Ethernet clients to access the same cluster in these mixed networking environments, allowing all

-performance storage.

A list of supported NICs that work with WEKA is available at https://docs.weka.io/planning-and-installation/prerequisites-

and-compatibility

Network High Availability (HA)

WekaFS supports high availability (HA) networking to ensure continued operation should a network interface card (NIC) or

network switch fail. HA performs failover and failback for reliability and load balancing on both interfaces and is operational

for both Ethernet and InfiniBand. For HA support, the WEKA system must be configured with no single component

representing a single point of failure. Multiple switches are required, and hosts must have a connection to each switch. HA

for clients is achieved through the implementation of two network interfaces on the same client. WekaFS also supports the

Link Aggregation Control Protocol (LACP) on the compute clients on Ethernet (modes 1 and 4) for a single dual-ported NIC.

Additionally, WekaFS supports failover of Infiniband to Ethernet within the storage cluster to maintain high availability in

case the Infiniband network fails. This failover does not apply to clients which much be on one type of network or the other.

WekaFS can easily saturate the bandwidth of a single network interface card (NIC). For higher throughput, it is possible to

leverage multiple NICs. Using a non-LACP approach sets a redundancy that enables the WEKA software to utilize two

interfaces for HA and bandwidth, respectively.

When working with HA networking, it is useful to hint the system to send data between hosts through the same switch

rather than using the switch interconnect (ISL). The WEKA system achieves this through network port labeling, which also

ensures ease of use. This can reduce the overall traffic in the network.

Note: Unlike RoCE implementations that require Priority-based Flow Control (PFC) to be configured in the switch fabric, WEKA

does not require a lossless network setting to support its NVMe-over-fabrics implementation and can even deliver this level of low

latency performance in public cloud networks.

https://docs.weka.io/planning-and-installation/prerequisites-and-compatibility
https://docs.weka.io/planning-and-installation/prerequisites-and-compatibility

16

16

REFERENCE ARCHITECTURE

Protocols

WekaFS supports full multi-protocol and data-sharing capability across a variety of protocols allowing diverse application

types and users to share a single pool of data. Unlike other parallel file systems, WekaFS does not require additional

management server infrastructure to deliver this capability. The following list includes all currently supported protocols:

• Full POSIX compliant global system support

• NVIDIA GPUDirect Storage (GDS) for GPU acceleration

• NFS

• SMB S3 for Object access

POSIX
The WEKA client is a standard, POSIX-compliant filesystem driver installed on application servers, that enables file access

to WEKA filesystems. Like any other filesystem driver, the WEKA client intercepts and executes all filesystem operations.

This enables WEKA to provide applications with local filesystem semantics and performance, while providing a centrally

managed, sharable, and resilient storage platform. WekaFS provides advanced capability such as byte-range locks and is

tightly integrated with the Linux operating system page cache, covered later in the caching section.

The WEKA POSIX client provides the highest performance for IOPS, bandwidth, and metadata at the lowest latency.

NVIDIA GDS
GPUDirect Storage is a protocol developed by NVIDIA to improve bandwidth and reduce latency between the server NIC

and GPU memory, leveraging RDMA. WekaFS has full support for GDS and has been validated by NVIDIA including a

reference architecture at https://www.weka.io/promo/nvidia-ai-reference-architecture/

NFS
The NFS protocol allows remote systems to access the WEKA file system from a Linux client without the WekaFS client.

share data from the WEKA storage cluster. WekaFS currently supports NFS v3, and NFS v4.1.

SMB
The SMB protocol allows remote systems to connect to shared file services from a Windows or macOS client.

The protocol provides a scalable, resilient and distributed implementation of SMB, supporting a broad range of SMB

capabilities including:

• User authentication via Active Directory (Native and mixed mode)

• POSIX mapping (uid, gid, rid)

• UNIX extension

• SHA 256 signing

• Expanded identifier space

• Dynamic crediting

• Durable opens for handling disconnects

https://www.weka.io/promo/nvidia-ai-reference-architecture/

17

17

REFERENCE ARCHITECTURE

• Symbolic link support

• Trusted domains

• Encryption

• Guest access

• Hidden shares

• SMB ACLs

• Conversion from Windows to POSIX ACLs

• SMB security related share options

Note: WekaFS currently supports SMB v2.x and

S3
Many Web based applications now support the S3 protocol, however S3 was designed for scalability at the expense of

performance. Applications, such as real-time analytics on IoT data can benefit from high performance S3 access. WEKA has

implemented an S3 front-end support on its performance file system to accelerate S3 storage I/O. In particular, WekaFS

delivers huge performance gains for small file I/O accessed via S3. The S3 API on WekaFS supports the following calls:

• Buckets (HEAD/GET/PUT/DEL)

• Bucket Lifecycle (GET/PUT/DEL)

• Bucket Policy (GET/PUT/DEL)

• Bucket Tagging (GET/PUT/DEL)

• Object (GET/PUT/DEL)

• Object Tagging (GET/PUT/DEL)

• Object Multiparts (POST Create/Complete, GET/PUT/DEL, GET Parts)

In addition, the WEKA S3 implementation supports multiprotocol access, TLS, has full S3 audit logs, and has bucket level

features such as policies, quotas-per-bucket, and Expiry rules for information lifecycle management. For more information,

see https://docs.weka.io/additional-protocols/s3

https://docs.weka.io/additional-protocols/s3

18

18

REFERENCE ARCHITECTURE

Management GUI

WEKA provides three quick and easy ways to manage the WEKA file system, either through a Graphical User Interface

(GUI), or a Command Line Interface (CLI), or REpresentational State Transfer API (REST). Reporting, visualization, and

overall system management functions are accessible using the REST API, CLI or the intuitive GUI-driven management

console (see Figure 5).

Point-and-click simplicity allows users to rapidly provision new storage; create and expand file systems within a global

namespace, establish tiering policy, data protection, encryption, authentication, permissions, NFS, SMB and S3

configuration, read-only or read-write snapshots, snapshot-to-objects, and quality of service policies, as well as monitor

overall system health. Detailed event logging provides users the ability to view system events and status over time or drill

down into event details with point-in-time precision via the time-series graphing function (Figure 6)

Figure 5: WekaFS Management Software User Interface

19

19

REFERENCE ARCHITECTURE

Figure 6: Time-Series Charts for Event Monitoring

A System Events menu lists the events that have occurred in a WEKA environment. The events displayed in this window are

also transmitted to the WEKA Support Cloud (WEKA Home; https://home.weka.io), so that they can be used by WEKA

support to actively assist you when necessary or to proactively notify you when action needs to be taken. The WekaFS GUI

is entirely web-based and self contained, eliminating the need to physically install and maintain any software resources, and

you always have access to the latest management console features.

Command Line Interface (CLI)

All WekaFS system functions and services can be executed via a CLI command. Most WEKA system commands are system

wide and deliver the same result across all cluster nodes. Some commands are executed on specific nodes such as IP

address management.

REST API

All WekaFS system functions and services can be executed via a web service API, which adheres to the RESTful API

architecture. Similar to the CLI, most WekaFS RESTful commands are system-wide and deliver the same results on all

cluster nodes. Some commands are executed on specific nodes. The API is presented via a Swagger interface for ease of

use and examples of API code in multiple programming languages. You can find a example of the Swagger interface at

https://api.docs.weka.io

https://home.weka.io/
https://api.docs.weka.io/

20

20

REFERENCE ARCHITECTURE

Adaptive Caching

Applications, particularly those with small files and lots of metadata calls, benefit greatly from local caches. The data is

available with very low latency and it reduces the load on the shared network as well as on the back-end storage itself. The

WEKA file system provides a unique advanced caching capability, called adaptive caching, that allows users to fully

leverage the performance advantages of Linux data caching (page cache) and metadata caching (dentry cache) while

ensuring full coherency across the shared storage cluster. NFS v3 does not support coherency so utilizing Linux caching

can lead to data inconsistency for read cache and potential data corruption for write cache. WekaFS supports leveraging

Linux page cache typically reserved for direct attached storage (DAS) or file services run over block storage on a

shared networked file system, while maintaining full data consistency. The intelligent adaptive caching feature will

proactively inform any client, that was an exclusive user of a file (and hence running in local cache mode), that another

client now has access to the data set. Once this flag is set, the client can continue running in local cache mode until the file

is modified by another client. WekaFS will now invalidate the local cache ensuring that both clients are only accessing the

most recent iteration of the data. This ensures the highest performance from local cache when appropriate and always

ensures full coherency on data. This functionality does not require specific mount options to leverage local page cache as

WekaFS dynamically manages caching, making the provisioning of the WEKA environment very simple to manage with no

danger of an administrative error causing data corruption.

WekaFS provides the same capability for metadata caching, also known as Linux dentry cache. A client can leverage local

metadata cache for a directory, reducing latency significantly. However, once another client has access to the same

directory, WEKA will ensure that any directory changes from one client will invalidate the cached metadata for all other

clients accessing that directory. The caching capability also includes extended attributes and access control lists (ACLs).

While some shared file storage vendors allow local caching, no other file system provides the adaptive caching capability of

WekaFS. Caching is typically disabled by default and requires an administrator to change the mount option. That is because

write coherency typically depends on some form of battery backup protection on the client to ensure data consistency on a

-of-the-box without any administrator intervention as WEKA

does not depend on battery protection to protect acknowledged writes. As a result, the same software that runs on-

premises can be seamlessly deployed in the public cloud with no software changes. This feature is ideal for use cases such

tly faster as a local process vs. across a shared file system.

Global Namespace and Expansion
WekaFS manages all data within the system as part of a global namespace and supports two persistent storage tiers in a

single hybrid architecture NVMe SSD for active data and HDD/Hybrid flash-based object storage for a data lake.

Expanding the namespace to object store is an optional addition to the global namespace and can be configured with a few

clicks from the management console. A file resides on flash while it is active or until it is tiered off to object storage based on

preset or user-defined policies. When a file is tiered to the object store, the original file is kept on the flash layer until the

physical space is required by new data, and hence acts as a cached file until overwritten. When file data is demoted to the

object store tier, the file metadata always remains locally on the flash tier, so all files are available to applications in the

location they were written to, irrespective of tiering placement, even if the object store bucket was in the public cloud2. As

NVMe flash system capacity is consumed and usage reaches a high watermark, data is dynamically pushed to the object

2 Note: An on-premises flash tier, with a cloud-based object tier would suffer the performance penalty of a WAN connection and the ingress/egress costs of cloud.

21

21

REFERENCE ARCHITECTURE

tier, which means you never have to worry about running out of capacity on the flash tier. This is particularly useful for write-

intensive applications, as no administrator intervention is required. The flash tier and the object tier can scale independently

depending on the required usage capacities.

The global namespace can be sub-divided into 1024 file systems and file system capacity can be expanded at any time

on-the-fly without the need to unmount and mount the file system, simply by allocating more space to it. By segmenting

the namespace, storage capacity can be allocated to individual users, projects, customers, or any other parameter, yet be

easily and centrally managed. Data within a file system is fully isolated from every other file system to prevent noisy

neighbor issues.

Thin Provisioning

WekaFS allows thin provisioning of filesystems within the global namespace. When additional Hosts are added into the

cluster, any capacity that is available can be pooled and accessed as a thin provisioned resource. This feature is key in

allowing both automatic capacity expansion when hosts or drives are added, but also in managing space if hosts or drives

are removed from the cluster. Available capacity remaining after removal of hosts or drives must be enough to support the

amount of data stored in the flash tier for all the filesystems. This feature also enables seamless integration with EC2 auto

scaling groups in AWS, and auto scaling capabilities in other hyperscalar clouds such as GCP, OCI and Azure.

Non-Disruptive Upgrades
WekaFS has the ability to be upgraded without impacting clients. Because WEKA uses containers and sets of processes

clients. This capability when combined with the resiliency of the WEKA data protection schema, allows for WekaFS to be

upgraded on the fly with only a minimum of I/O pauses during the process. Clients do not need to be unmounted and

remounted during the upgrade process.

Integrated Tiered Data Management

WekaFS has a built-in, policy-based automated data management feature, that transparently moves data across storage

types according to the data temperature. WEKA supports moving data from the NVMe flash storage tier to on-premises or

cloud-based object storage (Figure 7). Data movement is set at the per-file system level and is an optional extension of the

NVMe flash tier. For example, to always ensure the highest performance, users may want to keep certain file systems

exclusively on NVMe SSD, while other file systems implement data

22

22

REFERENCE ARCHITECTURE

Figure 7: Integrated Tiering to any S3 or Swift-Compatible Object Store

movement to object storage for the best cost economics. Metadata is always stored on the flash tier, and a read-only or

read-write snapshot of the entire file system, including its data structures, can be stored on the object storage tier to protect

against a failure on the flash tier. The application clients see all the files in a given file system in the location they were

written, regardless of their tiering status, thus no change in application is needed to leverage cost-optimized object storage-

based solutions.

This integrated capability eliminates the need for additional Hierarchical Storage Management (HSM) or data tiering

software that adds complexity and cost. The by-product of the integrated data management features is an elastic unified

namespace that can s

https://docs.weka.io/support/prerequisites-and-compatibility#object-store

There is no hard and fast rule, on how much data should be on NVMe

customers shows that the typical distribution is now around 20% on flash (As seen in Figure 7). A good rule of thumb is to

measure the flash tier such that it will hold the normal working data sets for current workloads, and enough capacity to pre-

stage new workloads for maximum performance.

Data Migration to WekaFS
The object storage tier is an ideal infrastructure choice for building out a large data warehouse or data lake for ongoing data

analytics and data insights. WekaFS has the ability to consolidate multiple data lakes into a single massively scalable data

warehouse allowing for a single exascale namespace with high performance data access and data processing.

Migrating from end-of-life hardware platforms or remote buckets can be challenging for administrators as data ingest will

flood the file system, crushing the performance for any other application running normal I/O on the system. WekaFS allows

a mount option direct to the object store, that passes the ingested data directly to the object store without consuming the

other applications.

https://docs.weka.io/support/prerequisites-and-compatibility#object-store

23

23

REFERENCE ARCHITECTURE

Snapshots and Clones

WEKA supports user-definable snapshots for routine data protection including backup as well as for cloud data migration

and cloud bursting. For example, WekaFS snapshots can be used to back up files locally on the flash tier as well as making

copies to cloud storage tiers for backup or disaster recovery. Also, WEKA snapshots can be saved to lower-cost cold

storage such as public cloud and on-premises object storage. In addition to point-in-time snapshots, WekaFS can create full

clones of the filesystem (read-only snapshots that can be converted into writable snapshots) with pointers back to the

originating data. WekaFS snapshots and clones occur instantaneously and are incremental after the first instance, which

dramatically reduces the time and storage required for protection. Furthermore, system performance is unaffected by the

snapshot process or when writing to a clone. Snapshots can be created from the GUI, CLI or through a REST API call.

WekaFS supports:

• Read-only snapshots

• Read/write snapshots

• Delete primary snapshot, keeping all other versions

• Delete any snapshot, keeping previous and later versions

• Convert read-only to read/write snapshots

• Snap-to-object (see next section)

Snapshots are exposed to clients via a /.snapshot directory. If tiering is enabled, snapshotted data will be moved to to the

object tier based on the same policies as the active filesystem.

Snap-to-Object
Once Tiering is enabled in a file system, WekaFS supports a unique feature called Snap-to-Object. This feature enables the

committing of all the data of a specific snapshot, including metadata, to an object store. Unlike data lifecycle management

processes utilizing tiering, this feature involves copying all the contents of the snapshot, including all files and metadata to

an object store. After the first snap-to-object has been completed, subsequent snapshots are stored in a incremental

manner so backup time is limited to just the changes and is very fast. WekaFS also supports sending snapshots to a second

object store using the Remote Backup feature. This leverages the incremental nature of snapshots by only sending the

changes across the wire to the destination object store. The object store then only needs to store the incremental capacity

of the snapshots at any given time instead of the complete capacity of each snapshot that is uploaded.

Snap-to-Object also has an incremental Snapshot Download capability embedded within it. When an initial snapshot from a

source filesystem is restored into a new filesystem by downloading the snapshot from the object store, further snaphots of

that source filesystem can then be incrementally restored into the destination filesystem. With this technology, any updates

to the destination filesystem will be seen by closing the file or directory and reopening it when using the WEKA POSIX

client, and by closing the file or directory, then invalidating any client caching when using other protocols. The clients do not

have to unmount and remount the filesystem to see the changes that have occurred.

24

24

REFERENCE ARCHITECTURE

The outcome of using the snap-to-object feature is that the object store contains a full copy of the snapshot of the data,

which can be used to restore the data on the original WEKA cluster or onto another WEKA cluster. The secondary cluster

that mounts the WekaFS snap-to-object snapshot does not need to be a mirror of the primary system. In fact, the primary

system could have 20 storage hosts in the cluster, while the second system could have 6 or 10, or 100. Any cluster size will

work. This makes it ideal for cloud bursting. Consequently, the snap-to-object feature is useful for a range of use cases,

as follows:

1. Generic Use Cases (on-premises and cloud)

a. Backup of data to an on-premises or cloud-based object store: If too many hardware components in a WEKA cluster

fail beyond recovery because of a failure of the system or an external event such as a fire, earthquake, flood, etc., the

snapshot saved to the object store can be used to re-create the same data on another WEKA cluster, or re-hydrate

onto the original cluster.

b. Data archival: The periodic creation of data snapshots, followed by uploading the snapshot to an object store or the

as AWS Glacier instant retrieval for this purpose.

c. Asynchronous mirroring of data: Combining a WEKA cluster with a replicated object store in another data center will

create a mirror of the data that can be mounted on a second WEKA cluster.

2. Cloud-Only Use Cases

a. Public Cloud pause and restart: In the various cloud providers, WEKA utilizes compute instances with local SSDs to

create a cluster. For bursty project-specific work, users may want to shut down or hibernate the cluster to save costs.

The snapshot can be saved to a object store and re-hydrated when needed again at a later time.

b. Protection against single availability zone failure: Utilizing the snap-to-object feature allows users to recover from an

availability zone (AZ) failure. Should the first AZ fail, if the WEKA snapshot was replicated to a second AZ via the

object store, it can be re-hydrated in minutes by a WEKA cluster in the secondary AZ.

3. Hybrid Cloud Use Case

a. Cloud bursting: An on-premises customer can benefit from cloud elasticity by using additional computational power

for short periods. By uploading a snapshot to a cloud based object store, the file system can be run in the cloud. After

running in the cloud, the data can be deleted or archived and the compute instances shut down.

Data Protection

Data protection is a critical function of any storage system, and challenges are amplified at scale. Without an appropriate

internal data protection schema, file systems would need to be limited in size to accommodate the effects of disk or host

rebuild time windows and minimize the risk of data exposure. Popular data protection schemes such as RAID3, internal

replication (copies of blocks/files), and erasure coding are a compromise between scalability, protection, capacity,

and performance.

With WEKA, there is no concept of data or metadata locality, as all data and metadata are distributed evenly across the

storage servers, which improves the scalability, aggregate performance and resiliency. With the advent of high-speed

3 RAID = Redundant Array of Independent Disks

25

25

REFERENCE ARCHITECTURE

networks, data locality actually contributes to performance and reliability issues by creating data hot spots and system

scalability issues. By directly managing data placement on the SSD layer, WekaFS can distribute the data across the

storage cluster for optimal placement based on user-configurable stripe sizes. WekaFS uses advanced algorithms to

determine data layout; the placement of data perfectly matches the block sizes used by the underlying flash memory to

improve performance and extend SSD service life. Stripe sizes can be set to any value from 4 to 16, while parity can be set to

either +2 or +4. Figure 8 illustrates data placement across SSDs in a 6+2 configuration. The minimum supported cluster

size is 6, which allows for two full virtual spares for a rebuild from a 4+2 configuration. The bigger the WEKA cluster, the

bigger the stripe size that it can support, and the greater the storage efficiency and write performance.

Figure 8: WekaFS data distribution

WekaFS Data Protection Schema

WekaFS manages protection so data is always safe and accessible:

• Configurable data protection levels from 4+2 to 16+4

• Patented distributed data protection schema

• Configurable failure domains

• End-to-end checksums for data integrity

• Metadata journaling

• Local snapshots and clones

• Snapshot-to-object for backup and DR

WEKA uses failure domains to define data protection levels. Failure domains are fully configurable starting at the server host

level, which provides single or multiple SSD level granularity. Data protection levels are flexible depending on the size and

scale of the server cluster the larger the cluster, the larger the recommended data stripe size for the best utilization of SSD

capacity, improved performance, and higher resiliency. For granular protection, the data protection level is set at the cluster

level and parity can be set to two or four, meaning that the system can survive up to two or four simultaneous host failures

without impacting data availability.

unique from a cloud storage perspective. Many cloud based storage services use a triple replication scheme to protect data.

rotection scheme delivers significantly better resiliency than triple replication which only protects to 2

failures without the expensive storage and throughput impact. An N + 2 protection level is sufficient for most production

environments, whether with converged (application and storage sharing the same host) clusters or dedicated appliances.

STRIPE 1

STRIPE 2

 STRIPE 3

3 Q 4 P 1 2

1 Q 2 Q P 4

Failure
Domain 1

Failure
Domain 2

Failure
Domain 3

Failure
Domain 4

Failure
Domain 5

Failure
Domain 6

Failure
Domain 7

Failure
Domain 8

26

26

REFERENCE ARCHITECTURE

An N+4 protection level is recommended for clusters with a large number (hundreds) of converged cluster servers because

application failures or lockups can impact server availability.

In addition to core data protection, WEKA recommends availability best practices such as servers with redundant power

supplies, multiple NICs and switches for network redundancy, etc.

Virtual (hot) Spare

A virtual (hot) spare is reserved capacity so that if a failure domain has failed, the system can undergo a complete rebuild of

data, and still maintain the same net capacity. All failure domains always participate in storing the data, and the virtual spare

capacity is evenly spread within all failure domains.

The higher the virtual spare count, the more hardware that is required to obtain the same net capacity. Conversely, the

higher the hot spare count, the more relaxed the IT maintenance schedule for replacements. The virtual spare is defined

during the cluster formation and can be re-configured at any time. The default number of virtual spares is one.

Data Distribution

WEKA utilizes a patented4 distributed data protection coding scheme that increases resiliency as the number of the servers

in the cluster scale. It delivers the scalability and durability of erasure coding but without the performance penalty. Unlike

legacy hardware and software RA

as the system scales because every server in the cluster participates in the rebuild process.

WekaFS equally distributes data and metadata across logical buckets that span failure domains (FD). A failure domain

can be a individual storage server, a rack, or even a data center. In cloud environments, WekaFS can span availability

zones (AZ).

Unlike traditional hardware and software data protection schemes, WEKA only places a single segment of a given data

stripe inside any one server (or FD), so in the event of multiple drive failures within a single server it will still be considered a

single failure of the domain. The data distribution mechanism always stripes across failure domains. The protection level is

defined at the FD level. WekaFS handles failures at the FD level, so individual or multiple failures within the FD is treated as

a single failure. Data stripes are always spread across different server hosts, racks, or AZs depending on the resiliency

-configurable to define the number of failures to tolerate within a WEKA cluster to meet

the application workload service level requirements. When a failure occurs, the system considers the FD a single failure,

regardless of how large the domain is defined. In addition to distributing stripes at the FD level, WEKA also ensures a highly

randomized data placement for improved performance and resiliency. As the cluster size grows the probability of a

hardware failure goes up proportionally, but WekaFS overcomes this issue by distributing the stripes in a randomized

manner. The more servers, the higher the amount of random stripe combinations, making the probability of a double failure

lower. Example: for a stripe size of 18 (16+2) and a cluster size of 20 the number of possible stripe combinations is 190,

however as the cluster size grows to 25, the number of possible stripe combinations is now 480,700. The number of possible

4 United States Patent 9448887 http://www.freepatentsonline.com/9448887.html to learn more

http://www.freepatentsonline.com/9448887.html

27

27

REFERENCE ARCHITECTURE

stripe combinations is based on the following formula where C is the number of servers in a cluster, and S is the stripe size:

C!/(S!*(C-S)!).

WekaFS Rebuilds

WEKA uses several innovative strategies to return the system to a fully protected state as quickly as possible and be ready

to handle a subsequent failure. This ensures that applications are not impacted by long data rebuild processes.

WEKA protects data at the file level, so it only needs to rebuild the data that is actively stored on the failed server or SSD.

This means, that the rebuild times are faster compared to a traditional RAID solution or file server that protects data at the

block layer. RAID controller based systems typically rebuild all blocks on an affected storage device (SSD/HDD), including

empty blocks, prolonging rebuilds and the time of exposure. WEKA only needs to rebuild the specific file data that has been

affected by the failure. When a tiering-to-object policy is in place with a filesystem, a further benefit is that data that has

already been tiered off to the object store is never impacted by a server failure because it is protected on the object store. In

addition, any cached data (data that was tiered to object but still remains on the flash tier until invalidated) does not need to

be rebuilt either, limiting the rebuild priority to data that only resides on the flash tier.

WEKA stripes are comprised of 4k blocks. A stripe is distributed across all available failure domains. No two blocks

belonging to the same stripe will be written to the same failure domain. Therefore, losing a failure domain results in only

losing a single block from a stripe. All the remaining FDs in the cluster will participate in the rebuilding of any missing blocks

in the stripe. Examples of this include singular disk failures, host failures or entire failure domain failures. WEkaFS will

rebuild data from that drive(s) or FD using a parity calculation and write that data across all remaining healthy FDs. This

means that the larger the cluster size, the faster the rebuild and the more reliable the system becomes because more

compute resources are available to participate in the rebuild process and the stripes become more randomized across the

hosts. In the event of multiple failures, the system prioritizes data rebuilds starting with data stripes that are in the least

protected state. WEKA looks for data stripes, that are common to the failed hosts and rebuilds these data stripes first so the

system can be returned to the next level higher of protection as fast as possible. This prioritized rebuild process continues

until the system is returned to full redundancy. By contrast, in a replicated system only the mirrored servers participate in

the recovery process, impacting performance significantly. Erasure coding suffers from a similar problem, where only a small

subset of the servers participates in the recovery. With WekaFS, the recovery rate is user-configurable and the amount of

network traffic dedicated to rebuild can be changed at any time, so administrators have complete control to determine the

best tradeoff between continued application performance and time-to-recovery.

Power-Fail and End-to-End Data Protection
Using a checksum process to ensure data consistency, WekaFS provides end-to-end data protection for both reads and

writes. Checksums are created on write, and validated on reads. WEKA always stores data and checksum information

separately from each other on different physical media for improved protection.

WekaFS provides additional data integrity capabilities by protecting against data loss due to power failures. When a write is

acknowledged back to the client, it is safely protected from server failures or data-center-wide power failure through a

journaling proc -center-wide power

failure in minutes because there is no need to do a complete file system consistency check (FSCK). For most other file

28

28

REFERENCE ARCHITECTURE

systems, the FSCK process recovery time is proportional to the size of the recovered file system. In large scale deployments,

this recovery can take days or weeks.

Automated Data Rebalancing

WekaFS proactively monitors and manages the performance, resiliency, and capacity health status of a WEKA cluster. This

allows the system to calculate the utilization levels (performance and capacity) of hosts to redistribute data automatically

and transparently across the cluster to prevent hot spots.

The benefit is that WEKA can maintain well-balanced cluster performance and data protection as capacity and usage

change. Another advantage is that as additional SSDs are added to existing servers or the cluster is expanded with more

servers, WEKA automatically rebalances to enhance performance, resiliency, and capacity without requiring costly

downtime for data migration. Matched capacity SSDs are not required, which allows you to leverage new technology and

save money as SSD prices decline.

Container Storage Integration
Container Storage Interface (CSI) is a standard that has been developed to provision and manage shared file storage for

containerized workloads. The WEKA CSI Plugin for Kubernetes provides an interface between the logical volumes in a

Kubernetes environment (Persistent Volumes (PVs)) and the storage, enabling customers to deploy stateless WEKA clients

to connect storage to the appropriate container. The CSI plugin provisions a Kubernetes pod volume either via Persistent

Volume (by an administrator) or it can be dynamically provisioned via a Persistent Volume Claim (PVC). This feature

simplifies the process of moving containerized workloads to the cloud or sharing data across multiple Kubernetes clusters.

The CSI plugin also supports using quotas to help manage space consumption for containerized applications.

Multi-Tenancy Features

multi-tenancy capabilities provide secure and scalable hierarchical access controls through organizations, ensuring

both physical and logical isolation for tenants. With advanced features like quotas, QoS, RBAC, and VLAN tagging, it

enables efficient resource management, fine-grained performance optimization, robust authentication, and secure, isolated

network communication. VLAN tagging further enhances tenant isolation by segregating network traffic at the container

level, ensuring consistent performance and seamless integration with diverse network environments. These capabilities

empower cloud providers to meet the needs of diverse and demanding workloads with security and scalability at their core.

Hierarchical Multi-Tenancy with Organizations

WekaFS introduces advanced multi-tenancy capabilities by leveraging the construct of organizations, enabling hierarchical

access controls. These features ensure that access to data is securely managed at the organizational level, allowing only

members of an organization to view or manage their data. Key aspects include:

• Organizational Administration: Each organization operates independently under an Organizational Administrator,

who manages logical entities and controls access to data. The Cluster Administrator retains overarching control to

create and delete organizations, define Organization Administrators, and monitor capacity usage.

29

29

REFERENCE ARCHITECTURE

• Scalability: WekaFS supports up to 64 distinct organizations, ensuring flexibility and scalability for diverse tenant

environments.

Composable Clusters

The new features introduced by W s multitenancy architecture ensure both physical and logical isolation for tenants,

addressing challenges like the "noisy neighbor" effect and performance interference. Each tenant is allocated dedicated

resources, such as drives, memory, and CPU cores, delivering secure and independent operations. This approach not only

enhances security but also ensures predictable performance for demanding workloads, even as tenant numbers scale. By

enterprises and cloud providers can dynamically adjust resource allocation in

real-time, maintaining efficiency without compromising tenant isolation or performance.

Capacity Quotas

As noted, there are many ways that WekaFS manages capacity utilization across organizations.

• Organizational level quotas allow groups to manage their own file systems and capacity. WekaFS supports up to 64

organizations.

• File system level capacity allows different projects or departments to have their own allocated capacity. The WEKA file

system supports up to 1024 file systems on a single storage namespace.

• Directory level quotas provide a quota per project directory, useful when there are many projects withing a single file

system. Quotas can be set at an advisory level, as hard quotas or as soft quotas.

VLAN Tagging for Secure Multi-Tenant Networking

The WEKA system leverages VLAN tagging to ensure secure, scalable, and isolated network communication in multi-tenant

environments. This feature allows for precise network traffic segregation by associating specific containers with VLANs,

with each container supporting one VLAN per NIC. This granular control enhances security and optimizes network

configurations while remaining compatible with existing workflows.

VLAN tagging supports explicit tag configuration or automatic inference from VLAN interfaces, enabling seamless

integration with diverse network setups. By isolating traffic at the network layer, WEKA ensures consistent performance and

secure communication, even in shared environments. For advanced setups, VLAN tagging accommodates extended

configurations, including gateways, IPs, and netmasks, providing flexibility to address unique network requirements.

These capabilities are essential for maintaining robust and efficient operations in multi-tenant cloud deployments,

reinforcing WEKA's commitment to high-performance, secure infrastructure management.

Quality of Service
The WEKA client also has additional performance management capabilities in the form of QoS functionality. This is a

limiting function where you can set both a preferred throughput, and a maximum throughput. The client will attempt to limit

as close to the value of the preferred performance as possible, but allow bursting up to the maximum amount if resources

30

30

REFERENCE ARCHITECTURE

are available. This enables per-application performance management when accessing WekaFS. When combined with

quotas and organizational controls, this allows fine-grained resource management within the WEKA system.

Authentication and Access Control

WekaFS provides authentication services at the user level and the client-server level to validate that the user or client has

the ability to view and access data. WekaFS allows different authenticated mount modes such as read-only, or read-write

and is defined at the file system level.

Authenticated mounts are defined on the Organizational level and are encrypted by an encryption key. Only clients with the

proper key are able to access authenticated mount points. This methodology increases security by drastically limiting

access to certain subsets of an organization and limiting access to clients with the proper encryption key. WekaFS supports

the following:

• LDAP (Lightweight Directory Access Protocol), a networking protocol that provides directory services across many

different platforms.

• Active Directory, a Microsoft implementation of LDAP, a directory service that can store information about the network

resources. It is primarily used to authenticate users and groups who want to join the cluster.

• WekaFS also offers Role-Based Access Control (RBAC), delivering different levels of privileges to users and

administrators. Some users can be granted full access rights while others have read-only rights.

Every WEKA system user has one of the following defined roles:

Cluster Admin: A user with additional privileges over regular users. These include the ability to:

• Create new users

• Delete existing users

• Change user passwords

• Set user roles

• Manage LDAP configurations

• Manage organizations

31

31

REFERENCE ARCHITECTURE

Additionally, the following restrictions are implemented for Cluster Admin users to avoid situations where a Cluster Admin

loses access to a WEKA system cluster:

• Cluster Admins cannot delete themselves

• Cluster Admins cannot change their role to a regular user role

Organization Admin: A user who has similar privileges to cluster admins, except that these privileges are limited to the

organization level. They can perform the following within their organization:

• Create new users

• Delete existing users

• Change user passwords

• Set user roles

• Manage the organization LDAP configuration

Furthermore, to avoid situations where an organization admin loses access to a WEKA system cluster, the following

restrictions are implemented for organization admins:

• Organizational Admins cannot delete themselves

• Organizational Admins cannot change their role to a regular user role

Regular: A user with read and write privileges. A user that should only be able to mount filesystems

• can log-in to obtain an access token

• can change their password

• cannot access the UI or run other CLI/API command

Read-only: A user with read-only privileges

S3: A user to run S3 commands and APIs. This user can operate within the limits of the S3 IAM policy attached to it.

Encryption In-Flight and At-Rest

WekaFS provides full end-to-end encryption from the client all the way to the object storage solution, making it the most

robust encrypted file system commercially available. Encryption is set at the file system level upon creation of the file

system, so some file systems that are deemed critical can be encrypted while others are not. When files are encrypted, it

encryption solution protects against physical media theft, low-level firmware hacking on the SSD, and packet

eavesdropping on the network. File data is encrypted with the FIPS 140-3 Level 1 compliant encryption key XTS-AES using a

512-bit key length.

WEKA has demonstrated that encrypted file systems have minimal impact on application performance when using the

WEKA client.

32

32

REFERENCE ARCHITECTURE

Key Rotation and Key Management

WekaFS supports any key management system (KMS) that is compliant with KMIP (the Key Management Interoperability

Protocol) 1.2 and above, as well as Hashicorp Vault proprietary API. Cluster keys are rotated by the KMS, file system keys can be

rotated via the KMS and re- encrypted with the new KMS master key, and file keys can be rotated by copying the file.

File data on the object store is also encrypted. When uploading a snap-to-object to the object store, among other file system

- MS

and is used for all snap-to-object backups and restores. When WekaFS pushes a snapshot to an object store, the data is fully

protected and can be authenticated only through the KMS system.

Cloud Auto Scaling

For cloud-native applications auto scaling delivers the full flexibility of cloud elasticity by allowing resources to dynamically grow or

shrink based on performance or user demand requirements. WekaFS now supports EC2 auto scaling groups in AWS to allow auto

scaling up of the cluster for peak demand periods and auto scaling down when not needed. For Google Cloud Platform (GCP),

auto scaling is done via cloud functions that are triggered by terraform. Oracle Cloud Infrastructure (OCI) and Microsoft Azure use

other custom integrations from WEKA for auto scaling capabilities. In addition to this, thin provisioning of filesystems along with

auto scaling allows for available capacity to be automatically increased in the filesystems when the cluster is expanded, and

automatically shrunk as needed when the cluster is scaled down.

Flexible Deployment Options (On-Premises and Cloud)

Whether your applications run on bare metal for performance, in a virtual or containerized environment for ease of deployment and

resiliency, or entirely in the public cloud for on-demand scalability and elasticity, WEKA is a single, no compromise, storage

solution providing the freedom to choose the environment best suited for your application based on performance, scale, and

economics. WEKA clients can support bare metal, virtualized, containerized, and cloud environments (Figure 9).

Figure 9: Industry-Leading Flexibility to Support Your Operating Environment

WEKA provides industry-leading flexibility by supporting an extremely broad array of operating environments and deployment

models. It runs on standard x86-based servers using Ethernet or InfiniBand network adapters and off-the-shelf NVMe SSDs.

WEKA Storage can run on bare metal as well as in approved cloud environments.

Starting at only six servers, WEKA can scale to many thousands of servers. As infrastructure matures, WEKA enables expanding

the cluster with new servers, then retiring older generation servers, thus enabling lifecycle management of hardware refresh

without the need to perform complete lift-and-shift data migration to different storage.

VM VM VM APPLICATION PUBLIC OR PRIVATE

Hypervisor – KVM, VMware S3
COMPATIBLE

WekaFS SHARED FILE SYSTEM

BARE METAL VIRTUALIZED CONTAINERIZED CLOUD

ON-PREMISES HYBRID CLOUD PUBLIC CLOUD

33

33

REFERENCE ARCHITECTURE

Converged

In a converged deployment (Figure 10), WEKA is integrated into standard AMD or Intel x86-based application servers, or public

cloud instances. Combining storage and compute resources with applications and data into a single building block delivers a

highly optimized data center solution across a mix of workloads. This deployment model provides the ability to create integrated

application-based solutions with better economics, by eliminating the need for external storage, reducing hardware footprint and

power while boosting performance, availability, and capacity. WekaFS carves out storage resources and only utilizes the resources

in its container, with the remaining resources available to the applications. This deployment model is popular for clusters of GPU

servers which have local NVMe devices.

Figure 10: WekaFS in Converged Mode with Compute and Storage on the Same Infrastructure

Dedicated Storage Server

WEKA can be configured as a dedicated storage server (Figure 11) when all the resources of the system are dedicated to storage

services while applications run on a separate compute infrastructure. This mode is the most popular among customers as it

ensures that application disruptions do not impact storage services.

Figure 11: Dedicated Storage Server with Separate Compute and Storage Infrastructure

34

34

REFERENCE ARCHITECTURE

Native Public Cloud

WEKA is available in multiple public cloud hyperscalars including Amazon Web Services (AWS), Google Cloud Platform

(GCP, Oracle Cloud infrastructure (OCI) and Microsoft Azure. Deployment architecture varies between the different clouds,

but in general is very similar to an on-prem deployment: You choose a server configuration (EC2, OCI Compute Shape, GCP

Compute Engine, Etc.), make sure that NVMe devices are in or attached to the compute resource, assign networking, and

build the cluster. WEKA supports both converged and dedicated storage deployment models in the cloud. For compute-

intensive workloads, or to take advantage of GPU-based instances, it is best to use the dedicated storage server mode. If

you need additional low-cost, high-capacity storage, WEKA automated tiering to S3-compatible object stores is available.

This includes AWS S3, Google Cloud Storage, Oracle object storage and Azure blob. If you want to burst or migrate data to

the cloud, you can leverage WEKA snapshot-to-object functionality for data movement. For improved resiliency, WEKA also

supports the spanning of AZs in the public cloud. Figure 12 shows a typical deployment of WekaFS in the AWS public cloud.

For GCP, OCI and Azure, it would look similar to this, but with differing terminology for the compute and storage servers.

Performance in the cloud is coupled to the number of NVMe devices in a WEKA cluster as well as network speeds. For best

performance, please work with WEKA or partner system engineers to get a sizing recommendation.

Figure 12: WekaFS in the AWS Public Cloud

SINGLE NAMESPACE APPLICATION
COMPUTE INSTANCES

S3

35

35

REFERENCE ARCHITECTURE

WekaFS Performance Proof Points

IT organizations have historically relied on Direct Attach Storage (DAS) or All-Flash Arrays (AFAs) to meet the performance

needs of file-based applications. However, these approaches introduce limitations when shared access is required, often

resulting in performance degradation due to the constraints of traditional protocols such as NFS or SMB.

WEKA eliminates these limitations by delivering a shared, POSIX-compliant file system that combines the performance of

local storage with the flexibility of a networked file system. By leveraging an innovative distributed architecture, WEKA

enables high-performance, low-latency access to data at scale, rendering legacy AFA volumes for local file systems

obsolete.

Industry-Leading Benchmark Performance

WEKA has set multiple industry records across recognized benchmarks, demonstrating its leadership in high-performance

storage solutions for AI, HPC, genomics, and software development workloads.

SPECstorage 2020 Benchmark Records (2025)

In January 2025, WEKA running on the HPE Alletra Storage Server 4110 secured the No. 1 ranking across all five

SPECstorage Solution 2020 workloads:

• AI_IMAGE: Achieved 2.1x higher scalability and 2x higher throughput than previous records.

• EDA_BLENDED: Delivered 2.45x faster throughput and 6.5x lower latency than prior submissions.

• GENOMICS: Demonstrated 2.5x better scalability, enabling rapid genomic sequencing and analysis.

• SWBUILD: Supported 6,200 software builds with 1.8x faster response times.

• VDA (Video Analytics): Processed 14,400 streams with 1.2x better scalability and 2.4x lower latency.

-low latency across diverse workloads, ensuring

maximum efficiency for AI training, semiconductor design, genomics, and software development.

IO500 Benchmark Success (2025)

Memorial Sloan Kettering Cancer Center (MSKCC) benchmarked the WEKA Data Platform on the IRIS supercluster,

achieving exceptional results on the IO500 benchmark:

• 665.49 overall score with only 261 client nodes, significantly outperforming Lustre-based systems that required

over 2,000 nodes for similar performance.

• Metadata handling at 1,753.69 kIOP/s, nearly 2x higher than competing solutions, making WEKA the ideal choice

for AI/ML, genomics, and large-scale simulations.

• Performance Scaling and Efficiency

36

36

REFERENCE ARCHITECTURE

demonstrated:

• Over 100GB/sec and 5 million IOPs with 250-microsecond latency using just 16 storage nodes.

• Doubling resources resulted in 2x the I/O performance, proving seamless scalability without increased latency.

The Future of High-Performance Storage

WEKA redefines high-performance file storage with industry-leading throughput, low latency, and scalability. As proven by

benchmark results, WEKA consistently outperforms traditional NAS, DAS, and AFA solutions, making it the ideal choice for

organizations driving innovation in AI, HPC, genomics, and more.

For organizations looking to eliminate storage bottlenecks and maximize GPU and CPU efficiency, WEKA delivers the

fastest, most scalable data platform available today.

ARM-Based Cloud Performance with WEKA

WEKA now supports AWS Graviton and Azure Ampere instances, enabling seamless integration with ARM-based virtual

machines for AI, HPC, and performance-intensive cloud workloads. ARM processors, such as AWS Graviton4 and Azure

Ampere Altra, offer up to 60% lower energy consumption and 20% better price-performance compared to traditional x86

instances, making them ideal for modern data centers.

The WEKA Data Platform runs natively on ARM-based instances, leveraging the high core density, low thermal output, and

energy-efficient architecture of ARM processors. This allows cloud providers to scale compute and storage resources

effortlessly while maintaining consistent performance for the most demanding AI and HPC workloads.

Performance to GPU Storage

WekaFS is an ideal file system for GPU-intensive workloads. WEKA developed a reference architecture for the NVIDIA®

DGX-1 GPU System. FIO testing provides a baseline measure of the I/O capability of the reference architecture. The

performance test was conducted with a single DGX-1 system to establish the performance that WekaFS could deliver with

the minimum hardware configuration on a single 100-Gbit InfiniBand link to the host. Figure 18 shows that WekaFS is

capable of fully saturating a 100-Gbit link, delivering a peak read performance of 10.8 GBytes/second to a single DGX-1

system. The IOPs performance measurement shows that WekaFS delivered over 250,000 IOPs to a single DGX-1 system on

one 100-Gbit network link.

37

37

REFERENCE ARCHITECTURE

Figure 18: Performance to a Single NVIDIA DGX-1 GPU System over a 100Gbit Network Link

The following figure (Figure 19) demonstrates how WekaFS maintained perfect linear scaling from 1 NVIDIA DGX-1 to 9

NVIDIA DGX-1 systems. Each NVIDIA DGX-1 had 8 GPUs, for a total scaling to 72 Tesla V100 GPUs.

Figure 19: Performance Scaling from a Single GPU System to 9 GPU Systems

38

38

REFERENCE ARCHITECTURE

utilizing GPUDirect Storage. WekaFS scaled performance inside a single NVIDIA DGX-2 GPU server from one 100Gbit

EDR link to 8 EDR links with perfect linear scaling, saturating the network bandwidth.

Figure 20: Performance Scaling Inside a Single NVIDIA DGX-2 GPU Server with GPUDirect Storage

Performance in the cloud

Oracle Cloud Infrastructure. As shown in Figure 21, two FIO test runs were done, on clusters of 80 servers and 373 servers.

The results achieved were significantly higher than what has normally been expected in cloud environments, with nearly

2TB/sec reads and 1TB/sec writes achieved, along with 17million read IOPs and 12million write IOPs, all at sub 200

Microsecond latencies. There were zero tuning differences required between the FIO bandwidth and FIO IOP test runs.

A deeper look into this result is available at https://www.weka.io/blog/oracle-oci/

https://www.weka.io/blog/oracle-oci/

39

39

REFERENCE ARCHITECTURE

Figure 21: Performance at scale using WEKA in Oracle Cloud Infrastructure

40

© 2019-2023 All rights reserved. WekaIO, WekaFS, WIN, Weka Innovation Network, the Weka brand mark, the Weka logo, and Radically Simple Storage are trademarks of WekaIO, Inc. and its affiliates in

the United States and/or other countries. Other trademarks are the prop hat

WekaIO intends to make these available in all countries in which it operates. Product specifications provided are sample specifications and do not constitute a warranty. Information is true as of the date

of publication and is subject to change. Actual specifications for unique part numbers may vary. WKA314 07 02/25

REFERENCE ARCHITECTURE

weka.io 844.392.0665

Summary

WEKA addresses common IT storage problems by providing a fast, efficient, and resilient distributed parallel file system that

is cloud- native and delivers the performance of All-Flash Arrays, the simplicity of file storage, and the scalability of the

-like experience includes rapid provisioning to reduce time to get new

workloads deployed, along with elasticity scaling, resiliency, performance, and cost-effectiveness.

WekaFS is a POSIX-compliant high-performance clustered, parallel file system that has been built from the ground up to

run natively on NVMe based storage. It leverages high-performance networking either Ethernet or InfiniBand to fully

saturate the network links for maximum performance. It is an ideal solution for performance-intensive applications that

demand high I/O and high concurrency to multiple clients. It is in widespread use across areas such as Life Sciences,

Financial Analytics, GPU-based ML, DL and AI applications, EDA, and HPC applications. It excels in large bandwidth and

small I/O-intensive applications that have relied on parallel file systems for best performance. WEKA reduces the cost and

complexity of storage, requiring fewer hardware resources compared to traditional solutions. It also fully supports legacy

protocols such as NFS and SMB and has a rich set of enterprise-class features.

To learn more visit www.weka.io.

mailto:info@40weka.io
https://www.youtube.com/wekaio
https://twitter.com/wekaio
https://www.linkedin.com/company/weka-io/
https://www.facebook.com/Weka.IO/
file://///Users/graemeswift/Library/CloudStorage/OneDrive-WekaIO/WEKA%20Word%20Template/weka.io
tel:8443920665
/Users/graemeswift/Library/CloudStorage/OneDrive-WekaIO/WEKA%20Word%20Template/844.392.0665
http://www.weka.io/

